天堂成人av视频一区二区,大屌操在线观看,精品视频美女久久久中文,亚洲午夜久久久精品国产

供求商機(jī)
您現(xiàn)在的位置:首頁 > 供求商機(jī) > 代理Ossila材料PFN CAS:673474-74-3

代理Ossila材料PFN CAS:673474-74-3

代理Ossila材料PFN CAS:673474-74-3
點(diǎn)擊放大
供應(yīng)數(shù)量:
2837
發(fā)布日期:
2025/3/23
有效日期:
2025/9/23
原 產(chǎn) 地:
英國
已獲點(diǎn)擊:
2837
產(chǎn)品報(bào)價(jià):
  [詳細(xì)資料]

只用于動物實(shí)驗(yàn)研究等

PFN is a conjugated polyelectrolyte used as an electron-interface in OPV devices to improve extraction efficiencies. Currently producing power conversion efficiencies of up to 7.1% at Ossila with further increases expected from additional optimisation and up to 9.2% reported in the literature [1-3].

Soluble in polar solvents such as water and methanol in the presence of small amounts of acetic acid.

代理Ossila材料PFN CAS:673474-74-3

General Information

Full namePoly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9–dioctylfluorene)]
SynonymsPFN
Chemical formula(C52H70N2)n
CAS number673474-74-3

PFN chemical structureChemical structure of PFN. CAS no.: 673474-74-3. Chemical formula: (C52H70N2)n.

代理Ossila材料PFN CAS:673474-74-3

Usage details

Inverted OPV devices were made using the architecture shown below with PFN (batch M221) as an electron-interface and PTB7:PC70BM in a 1:1.5 blend ratio (batches M211 and M113 respectively). Ossila's S173 pixelated cathode substrate pack provided the device components.

Glass / ITO (100 nm) / PFN (5.5 to 10 nm) / PTB7:PC70BM (90 nm) / MoOx (15 nm) / Al (100 nm)

The substrate cleaning and PFN spin-coating were performed under ambient conditions with all other steps performed in an N2 glovebox until encapsulation had been completed (measurement performed under ambient conditions).

For generic details please see the fabrication guide and video. For specific details please see the condensed fabrication routine shown below. For information on our inexpensive Spin Coater for use with PFN please see our Spin Coater product page.

The active layer thickness, MoOx thickness, cathode metal (Ag or Al), PFN solution concentration, PFN drying/baking have not been fully optimised. As such, we expect further gains to be made with additional engineering work. However, for the devices made in this fabrication, a peak efficiency of 7.1% was achieved.

Efficiency for different PTB7 spin speeds - Standard architectureJsc for different PTB7 spin speeds - Standard architectureVoc for different PTB7 spin speeds - Standard architecture Fill factor for different PTB7 spin speeds - Standard architectureFigure 1: PCE, Jsc, Voc and FF for different spin speeds. Data shown is averaged with max and min overlaid with filled circles.

 

PTB7 JV Curve for inverted architecture
Figure 2: The JV curve for the best performing device.

 

Note that some burn-in was observed (i.e. a small improvement in device performance after a few seconds under the solar simulator) and the variability of the devices is currently slightly higher than for other interlayers (average PCE of 6.7%). We expect the uniformity to improve with further improvements in PFN processing, in particular the optimisation of drying conditions to ensure that the acetic acid is fully removed prior to active layer deposition.

 

Fabrication Routine

The below fabrication routine was used to fabricate inverted solar cells with peak efficiency of 7.1%. Further gains are expected with further optimisation.

Substrates/Cleaning:

  • Pixelated Cathode substrates (S173)
  • 5 mins sonication in hot Hellmanex III (1 ml in beaker)
  • 2x boiling water dump rinses
  • 5 mins sonication in warm IPA
  • 2x dump rinses
  • 5 mins sonication in hot NaOH
  • Dump rinse in boiling water
  • Dump rinse in water
  • Stored in DI water overnight and until use

PFN solution:

  • Stock solution of acetic acid dissolved 1:9 in methanol to enable low concentration solutions to be made more easily.
  • Acetic acid solution further dissolved to produce 2 μl/ml solution.
  • PFN dissolved at 2 mg/ml in methanol with 2 μl/ml of acetic acid with stirbar at ambient temperature for 10 minutes
  • Filtered through 0.45 μm PVDF filter

PFN Test Films

  • PFN Test film initially spun at 500 rpm and gave 21-22 nm
  • Second test film spun at 1000 rpm and gave 13-16 nm
  • Thicknesses extrapolated for higher spin speeds
  • It was noted that at low spin speeds 500 rpm to 2400 rpm there were significant crystallites present in the films - especially on the ITO. Extra filtration showed that this was not due to the solution and therefore most have been due to the drying process

Active Layer Solution

  • Fresh stock solution of PTB7 made on at 10 mg/ml in CB and dissolved with stirbar for 1 hour (dissolves very easily)
  • Mixed 1:1.5 with dry Ossila 95/5% C70 PCBM to make overall concentration of 25 mg/ml and dissolved with stirbar for 1 hour more
  • 3% of diiodooctane (DIO) added to solution
  • Filtered using 0.45 μm PVDF syringe filter

Active Layer Test Films

  • Test film spun at 1000 rpm for 2 mins using unfiltered solution and thickness measure on Dektak. Note that films must be fully dry before performing Dektak measurements.
  • 1000 rpm gave approximay 90 nm thickness.

Active layers

  • Devices spun using 30 μl dynamic dispense (20 μl gave only moderate wetting/coverage)
  • Spun for 2 mins
  • Cathode wiped with CB
  • Vacuum dried in glovebox anti-chamber for 20 mins to remove residual DIO from films

Cathode Evaporation

  • 15 nm of MoOx evaporated at 0.2 ?/s from fresh pellets at pressure <1e-6 mbar="" li="">
  • 100 nm of Al evaporated at 1.5 ?/s at pressure <1e-6 mbar="" li="">

Annealing / Encapsulation

  • No annealing performed
  • Encapsulated as standard, using Ossila EE1 (E131) epoxy and glass coverslip (C181) (30 mins in UV box).

Measurements

  • JV sweeps taken with Keithley 237 source-meter
  • Illumination by Newport Oriel 9225-1000 solar simulator with 100 mW/cm2 AM1.5 output
  • NREL certified silicon reference cell used to calibrate lamp output
  • Lamp current: 7.9 A
  • Solar output at start of testing: 0.995 suns at 25°C
  • Solar output at end of testing: 1.00 suns at 25°C
  • Electrochemically etched aperture mask was optically calibrated to 0.212 cm2

 

References

Please note that Ossila has no formal connection to any of the authors or institutions in these references.

    1. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Z. He et al., Nature Photonics, 6, 591–595 (2012)
    2. Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells, Z. He et al., Advanced Materials, 23, 4636–4643 (2011)
    3. Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells, R. Xia et al., Advanced Energy Materials, (2013)

    To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

    想了解更詳細(xì)的產(chǎn)品信息,填寫下表直接與我們聯(lián)系:

    留言框

    • 產(chǎn)品:

    • 您的單位:

    • 您的姓名:

    • 聯(lián)系電話:

    • 常用郵箱:

    • 省份:

    • 詳細(xì)地址:

    • 補(bǔ)充說明:

    • 驗(yàn)證碼:

      請輸入計(jì)算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7
    深圳市澤拓生物科技有限公司 專業(yè)提供:大小鼠解剖器械包,瑞士Sipel真空泵,美國EMS電鏡耗材
    深圳市澤拓生物科技有限公司版權(quán)所有   |   技術(shù)支持:化工儀器網(wǎng)
    聯(lián)系電話:0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號:粵ICP備17105262號  管理登陸
    在線客服
    欧美美国日本一区二区三区| 国产精品无人区久久久久久| 欧美乱人伦视频在线观看| 日韩成人伦理片在线观看| 美女裸体十八禁在线网站| va一区二区三区老女人| 亚洲 激情 另类 欧美| 国产一区二区三区在线看| 国产精久久一区二区三区| 久久精品国产亚洲av高清热| 人妻 丝袜 在线一区二区| 亚洲熟妇乱女区二区三区| 小泽玛利亚伦理在线观看| 久久99真人毛片免费高潮| 日本欧美一区二区三区视频 | 亚洲 成人 av 自拍| 久久97久国产精品黄毛片| 亚洲中文字幕在线第二页| 99热网址在线观看一区| 一区二区三区视频| a级国产理论片在线播放| 日本欧美vps一区二区| 粉色视频-高清在线观看| 黄色网站在线啊啊啊啊啊| cao在线视频一区二区| 精品国产一区二区三广区| 97国产精品三级视频播放| 国产黑丝啊啊啊在线观看| 久久久精品一区二区欧美| 天天日夜夜操av日日摸| 久久久久久久999精品毛| 欧美人妻日韩精品| 秋霞无码久久久精品交换| 18禁止看爆乳奶头在线| 国产亚洲午夜精品久久久| 日日摸日日碰夜夜爽亚洲| 国产亚洲欧美91水蜜桃| 天天操天天射天天色综合| 亚洲gv钙片在线观看网站| 久爱99爱九九av视频在线| 日本免费一区久久人人澡|