天堂成人av视频一区二区,大屌操在线观看,精品视频美女久久久中文,亚洲午夜久久久精品国产

供求商機(jī)
您現(xiàn)在的位置:首頁 > 供求商機(jī) > P3HT CAS:104934-50-1 Ossila材料P3HT

P3HT CAS:104934-50-1 Ossila材料P3HT

P3HT CAS:104934-50-1 Ossila材料P3HT
點(diǎn)擊放大
供應(yīng)數(shù)量:
2885
發(fā)布日期:
2025/3/24
有效日期:
2025/9/24
原 產(chǎn) 地:
英國
已獲點(diǎn)擊:
2885
產(chǎn)品報(bào)價(jià):
  [詳細(xì)資料]

只用于動(dòng)物實(shí)驗(yàn)研究等

Datasheet

The highest regioregularity P3HT (M104, RR = 96.3%) produces highly crystalline films and is recommended for OFETs, nanofibril formation and fast drying OPVs at the thin interference peak (90 nm). However, the exceptionally high regioregularity of this P3HT means that gelling and surface roughness can be an issue for slow-drying thick-film OPVs (>200 nm). Lower molecular weight and regioregularity P3HT is recommended for inkjet and other large area or slow drying deposition techniques where gelling/aggregation and surface roughness need to be avoided.

A fabrication report with mobility measurements of 0.12 cm2/Vs for M104 can be found below.

All the P3HT below is highly soluble (50 mg/ml) in chlorinated solvents such as chloroform, chlorobenzene, dichlorobenzene and trichlorobenzene. The intermediate and lower molecular weight P3HT materials are recommended for use with non-chlorinated solvents such as xylene, toluene and THF due to their increased solubility.

CAS number: 104934-50-1

 

Usage Details

Mobility Measurements for M104 - Fabrication Routine

A full fabrication report can be downloaded here.

Field effect mobilities in excess of 0.12 cm2/Vs are recorded using M104 when the active layer is dispensed on OTS-treated silicon oxide dielectric by static spin coating from an optimized high/low boiling point solvent mix.

High hole mobility in conjunction with good solubility and partial air stability make regioregular P3HT a reference material of choice for both fundamental and applied research in organic electronic, physics and chemistry. As one of the most well-studied organic semiconductor, P3HT is often acknowledge to be one of the benchmark against which any new p-type or donor conjugate molecule should be compared and evaluated.

Mobility has previously been found to be positively correlated with increasing region-regularity, slow drying time (achieved using high boiling point solvent), lowering of the surface energy, and molecular weight in excess of 50 kD. These conditions favour p-p stacking parallels to the OFET substrate, which in turn results in improved charge transport across the transistor channel [1-13].

 

Substrate size20 x 15 mm
Gate conductivity1-30 O·cm (Boron doped)
Silicon oxide thickness300 nm
Device per substratesFive, common gate
Channel length30 µm
Channel width1000 µm

 

The active layer solution preparation, spin coating, substrate annealing and measurements are performed in a glove box under a nitrogen atmosphere (H2O <0.1 PPM; O2 < 5/8 PPM).

For generic details on the fabrication of OPV devices, please see our written guide and video demonstration.

Active Layer Preparation

High-Regioregular and high molecular weight RR-P3HT (M104) (RR = 96.3%, Mw = 77,500, Mn = 38,700) is dissolved in a mix of high and low boiling point solvent in order to exploit the beneficial effect of long drying time and increase the wettability of low energy surface, respectively.

  • 5 mg/ml of M104 dissolved in anhydrous Chloroform:Trichlorobenzene (99:1) mix;
  • Vial is placed on hot plate (70°C) with a stirrer bar for 30 minutes;
  • Solution cooled down at room temperature and then filtered with a 0.45 µm PTFE filter;
  • Solution stored overnight on a hot plate at 30°C to prevent excessive aggregation of the P3HT molecules.

Substrate Cleaning

  • Substrates loaded on to substrate rack (to keep them in upright position);
  • Sonicated in hot Hellmanex solution (1%) for five minutes;
  • Rinsed twice in hot water;
  • Sonicated in warm Isopropyl alcohol (70°C) for five minutes;
  • Rinsed twice in cold DI water;
  • Substrates stored in DI water.

Thermal Deposition of Electrodes and Contact Pads

  • Done on Edwards 306 Thermal coater in clean room condition;
  • Substrates are blown dry and loaded in a low density evaporation stack with a low density shadow mask to pattern the desired features;
  • Secondary mask is added to selectively evaporate the gate and drain/source pads;
  • Vacuum chamber pumped down to a vacuum pressure of 5 x 10-6 mbar;
  • Chromium adhesion layer: 5 nm, rate 0.05 nm/s;
  • Aluminium: 80 nm, rate: 0.4 nm/s;
  • Changed secondary mask to deposit electrodes (FET channels);
  • Vacuum: 2-3 x 10-6 mbar;
  • Chromium adhesion layer: 1 nm, rate 0.05 nm/s;
  • Gold: 40 nm; rate 0.05 nm/s.

PFBT Treatment for Au Electrodes (Laminar flow)

  • Oxygen plasma treatment, 30 seconds at 100 W;
  • Substrates immersed in 2.5 mMol/l solution of PFBT in isopropyl alcohol at room temperature;
  • Substrates rinsed twice in pure isopropyl alcohol;
  • Substrates are blown with nitrogen gun.

OTS Treatment for SiO2 Dielectric (Laminar flow)

  • 200 µl solution of pure OTS in cyclohexane, anhydrous grade, prepared in glove box so to obtain a final concentration of 1 mMol/l;
  • Trough filled with 60 ml of cyclohexane, HPLC grade, in laminar flow;
  • Previously prepared OTS solution quickly added to the cyclohexane and mixed with a pipette tip;
  • Substrate (pre-loaded on a substrate rack) immersed in the trough;
  • Trough topped up with extra 3 ml cyclohexane and closed with a glass lid. The final solution (63 ml) contain OTS at a concentration of 1 mMol/l;
  • Substrates kept for 18 minutes in the OTS solution;
  • Substrates removed from the OTS solution, quickly rinsed twice in clean Cyclohexane, and then are blown dry with nitrogen gun.

Contact Angle Assessment

The water-drop test on the treated silicon is a quick test to qualitatively assess the effect of the OTS on the silicon substrates, see Fig. 3. Note that quantitative assessment has previously shown this routine to produce contact angles of 110°C and this test is used as a quick reference to ensure fabrication has functioned correctly.

P3HT (M104) spin coating (glove box)

  • 30 µl of Organic Semi-Conductor (OSC) solution delivered on the middle of the substrate and then spin coated at 1000 rpm for 10 s followed by 60 s at 2000 rpm;
  • Cotton swab soaked in chlorobenzene to thoroughly wipe clean the contact pads and the rest of the substrates with the exception of the area around the channel;
  • High precision cotton swab to clean between devices to avoid cross-talking and reduce leakage;
  • Substrates annealed at 90°C for 30 minutes;
  • Cooled down for ten minutes;
  • Five devices per substrate automatically characterised using Ossila FACT1 in glove box, see Fig 4;
  • Second annealing at 120°C for 20 minutes, slow cooling down at room temperature and measurement;
  • Annealing at 150°C for 20 minutes, slow cooling down at room temperature and measurement.

 

想了解更詳細(xì)的產(chǎn)品信息,填寫下表直接與我們聯(lián)系:

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細(xì)地址:

  • 補(bǔ)充說明:

  • 驗(yàn)證碼:

    請輸入計(jì)算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7
深圳市澤拓生物科技有限公司 專業(yè)提供:大小鼠解剖器械包,瑞士Sipel真空泵,美國EMS電鏡耗材
深圳市澤拓生物科技有限公司版權(quán)所有   |   技術(shù)支持:化工儀器網(wǎng)
聯(lián)系電話:0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號:粵ICP備17105262號  管理登陸
在線客服
中文字幕人成人乱码亚洲| 免费无码一区二区三区a片百度| 99国产午夜精品一区二区| 精品国产自在天天线2019| 久久夜色噜噜噜亚洲av| 久加勒比这里只有精品综合| 亚洲超碰碰中文字幕av| 日本久久久久亚洲中字幕| 中国黄色网一区| 亚洲欧美日韩乱清纯丝袜| 中国精品偷拍区偷拍无码| 国产福利一区二区三区在线| 在线观看免费a∨网站| 久久久久久五月婷婷激情| 午夜视频在线观看视频观看| 日本亚洲欧洲免费无线码| 99视频久久久| 国产日韩久久久噜噜久久| 欧美激情综合亚洲第一二| 日本一区二区三区在线视频| 亚洲综合激情久久久久久| 日韩亚洲欧美中文在线电影| 成人久久久久久蜜桃免费| 丁香五月天一区二区三区| 亚洲精品色欲成人综合网| 污污污成人在线免费观看| 亚洲国产男人的天堂久久| 精品视频日本视频在线观看| 欧美日韩一区二区三区网站| 亚洲欧美人高清精品a∨| 一个人看www在线视频| 人妻精品一区二区三区久久| 日本一道本不卡在线观看| 欧美日韩免费在线视频观看| 曰本福利写真片视频在线| 亚洲精品www| 久久久久精品国产三级不卡| 小一av在线v| 国产a久久精品一区二区| 91视在线国内在线播放| 久久人人玩人人妻做人人|